Cryoelectron microscopy analysis of small heat shock protein 16.5 (Hsp16.5) complexes with T4 lysozyme reveals the structural basis of multimode binding.
نویسندگان
چکیده
Small heat shock proteins (sHSPs) are ubiquitous chaperones that bind and sequester non-native proteins preventing their aggregation. Despite extensive studies of sHSPs chaperone activity, the location of the bound substrate within the sHSP oligomer has not been determined. In this paper, we used cryoelectron microscopy (cryoEM) to visualize destabilized mutants of T4 lysozyme (T4L) bound to engineered variants of the small heat shock protein Hsp16.5. In contrast to wild type Hsp16.5, binding of T4L to these variants does not induce oligomer heterogeneity enabling cryoEM analysis of the complexes. CryoEM image reconstruction reveals the sequestration of T4L in the interior of the Hsp16.5 oligomer primarily interacting with the buried N-terminal domain but also tethered by contacts with the α-crystallin domain shell. Analysis of Hsp16.5-WT/T4L complexes uncovers oligomer expansion as a requirement for high affinity binding. In contrast, a low affinity mode of binding is found to involve T4L binding on the outer surface of the oligomer bridging the formation of large complexes of Hsp16.5. These mechanistic principles were validated by cryoEM analysis of an expanded variant of Hsp16.5 in complex with T4L and Hsp16.5-R107G, which is equivalent to a mutant of human αB-crystallin linked to cardiomyopathy. In both cases, high affinity binding is found to involve conformational changes in the N-terminal region consistent with a central role of this region in substrate recognition.
منابع مشابه
On the mechanism of chaperone activity of the small heat-shock protein of Methanococcus jannaschii.
The small heat-shock protein (sHSP) from Methanococcus jannaschii (Mj HSP16.5) forms a homomeric complex of 24 subunits and has an overall structure of a multiwindowed hollow sphere with an external diameter of approximately 120 A and an internal diameter of approximately 65 A with six square "windows" of approximately 17 A across and eight triangular windows of approximately 30 A across. This ...
متن کاملSmall heat shock protein of Methanococcus jannaschii, a hyperthermophile.
Small heat shock proteins (sHSPs) belong to a family of 12- to 43-kDa proteins that are ubiquitous and are conserved in amino acid sequence among all organisms. A sHSP homologue of Methanococcus jannaschii, a hyperthermophilic Archaeon, forms a homogeneous multimer comprised of 24 monomers with a molecular mass of 400 kDa in contrast to other sHSPs that show heterogeneous oligomeric complexes. ...
متن کاملPreheating induced homogeneity of the small heat shock protein from Methanococcus jannaschii.
Small heat shock proteins usually exhibit increased chaperone-like activity either at high temperatures or after preheating. However, the activation mechanism is still unclear. In the current study, we investigated the preheating-activation process of Mj HSP16.5, using various biophysical methods. Although Mj HSP16.5 was reported to be the most monodispersed sHSPs, we found that the newly purif...
متن کاملSubunit exchange, conformational stability, and chaperone-like function of the small heat shock protein 16.5 from Methanococcus jannaschii.
Hsp16.5, isolated from the hyperthermophilic Archaea Methanococcus jannaschii, is a member of the small heat-shock protein family. Small Hsps have 12- to 42-kDa subunit sizes and have sequences that are conserved among all organisms. The recently determined crystal structure of Hsp16.5 indicates that it consists discretely of 24 identical subunits. Using fluorescence resonance energy transfer, ...
متن کاملStudy of PKA binding sites in cAMP-signaling pathway using structural protein-protein interaction networks
Backgroud: Protein-protein interaction, plays a key role in signal transduction in signaling pathways. Different approaches are used for prediction of these interactions including experimental and computational approaches. In conventional node-edge protein-protein interaction networks, we can only see which proteins interact but ‘structural networks’ show us how these proteins inter...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 288 7 شماره
صفحات -
تاریخ انتشار 2013